banner



Comment Calculer Le Nombre D Électrons

Un capteur photographique est un composant électronique photosensible servant à convertir un rayonnement électromagnétique (UV, visible ou IR) en united nations signal électrique analogique. Ce signal est ensuite amplifié, puis numérisé par un convertisseur analogique-numérique et enfin traité cascade obtenir une prototype numérique.

Le capteur est donc le composant de base des appareils photo et des caméras numériques, l'équivalent du picture show (ou pellicule) en photographie argentique.

Le capteur photographique met à profit fifty'effet photoélectrique [ane] , [2] , qui permet aux photons incidents d'arracher des électrons à chaque élément actif (photosite) d'une matrice de capteurs élémentaires constitués de photodiodes ou photomos. Il est nettement plus efficace que la pellicule : jusqu'à 99 % (en théorie) et près de 50 % (en pratique) des photons reçus permettent de collecter un électron, contre environ 5 % de photons qui révèlent le grain photosensible de la pellicule, d'où son essor initial en astrophotographie.

Deux grandes familles de capteurs sont disponibles : les CCD et les CMOS.

Les CCD existent encore sur les marchés des appareils compacts et les appareils à très haute résolution. Les appareils reflex les plus courants quant à eux 50'ont délaissé et utilisent majoritairement des capteurs CMOS.

Capteur CCD [modifier | modifier le lawmaking]

Un capteur photographique CCD.

Le CCD (Accuse-Coupled Device, ou en français « dispositif à transfert de charges ») est le plus simple à fabriquer. Inventé par George E. Smith et Willard Boyle dans les Laboratoires Bell en 1969 (cette invention leur rapporte la moitié du prix Nobel de physique en 2009), il est rapidement adopté pour des applications de pointe (imagerie astronomique) puis popularisé sur les caméras et appareils photograph.

Principe [modifier | modifier le code]

Le principe du transfert de charges.

Un CCD transforme les photons lumineux qu'il reçoit en paires électron-trou par effet photoélectrique dans le substrat semi-conducteur, puis collecte les électrons dans le puits de potentiel maintenu au niveau de chaque photosite. Le nombre d'électrons collectés est proportionnel à la quantité de lumière reçue.

À la fin de fifty'exposition, les charges sont transférées de photosite en photosite par le jeu de variations de potentiel cycliques appliquées aux grilles (bandes conductrices horizontales, isolées entre elles par une couche de SiOtwo ) jusqu'au registre horizontal (voir animation ci-contre).

Au niveau du registre de sortie, la accuse totale peut être lue par un suiveur de tension, généralement un unique transistor n-MOS. La accuse est stockée sur la grille du transistor, plaçant cette électrode à une tension dépendant de la capacité qui la sépare de la masse. Plus la capacité est faible, plus grand sera le facteur de conversion entre charge et tension, et donc le indicate de sortie. Ce signal sera, à fifty'extérieur du CCD, mesuré par united nations circuit à « double échantillonnage corrélé » [à définir] avant d'être amplifié et numérisé. Le double échantillonnage permet de s'affranchir du bruit de mesure introduit à chaque réinitialisation de la tension de grille du suiveur de tension, après la lecture de chaque pixel. Une mesure est effectuée directement après la réinitialisation, et une autre après le transfert de charge du pixel en cours de lecture, de sorte que l'intensité du pixel soit déterminée par la différence entre ces deux mesures et indépendante de la valeur variable obtenue à la première mesure.

Ces électrodes sont isolées par une couche de SiO2, complétée par 50'activeness d'une fine zone dopée « due north », le « culvert enterré » (buried aqueduct), du substrat de type « p ».

Trois types de CCD se sont succédé et coexistent toujours.

  • Le CCD « plein cadre » (full frame) : où l'ensemble de la surface contribue à la détection. C'est le plus sensible mais il présente plusieurs inconvénients :
    • les électrodes (grilles) en silicium polycristallin circulent au-dessus de la couche photosensible et absorbent une part importante de la partie bleue du spectre (0,35-0,45 micromètre) ;
    • il nécessite un obturateur externe pour permettre le cycle de transfert de accuse sans illumination ;
    • il est très sensible à l'éblouissement (blooming). Quand un photosite déborde, il inonde ses voisins. Pour pallier cet inconvénient, il peut être équipé d'un dispositif dit « bleed d'évacuation de charges » (LOD-Lateral Overflow Bleed) qui élimine les électrons en trop plein des photosites et limite la propagation de 50'éblouissement, mais diminue la sensibilité.
    • Les CCD « plein cadre » récents ont des photosites au pas de vi micromètres capables de stocker jusqu'à lx 000 électrons et ont united nations rendement quantique supérieur à xx %.

On sait, en 2013, fabriquer des CCD « plein core » de lxxx mégapixels (surface utile de 53,7 × 40,4 mm).

  • Le CCD « à transfert de trame » (full-frame transfer) : il associe deux matrices CCD de même dimension, 50'une exposée à la lumière, l'autre masquée. On peut ainsi procéder à un transfert rapide de la matrice d'exposition vers la matrice de stockage puis à la numérisation de celle-ci en parallèle avec fifty'acquisition d'une nouvelle image.
    • le chief inconvénient est de diminuer par deux la surface du photosite à taille de capteur égale (sensibilité moitié moindre)
    • les autres inconvénients (réponse spectrale, éblouissement) demeurent.
  • Le CCD « interligne » : plus complexe ; il associe une photodiode à chaque cellule CCD. C'est lui qui est principalement utilisé dans les photoscopes [à définir].
    • La photodiode spécialisée permet de retrouver une réponse spectrale couvrant correctement le spectre visible (0,35 - 0,75 micromètre)
    • il est généralement équipé d'un drain d'évacuation de charges qui limite la propagation de l'éblouissement
    • il est par contre intrinsèquement moins sensible, les photodiodes ne représentant que 25 % à 40 % de la surface totale. Ce défaut est partiellement corrigé par un réseau de micro-lentilles convergentes qui améliore le rendement quantique de 15 % à 35-45 %
    • Les CCD interlignes récents ont des photosites au pas de 8 micromètres capables de stocker jusqu'à 100 000 électrons.

En 2009, il devient possible de fabriquer des CCD interlignes de 20 mégapixels pour le chiliad public (surface utile de 24 × 36mm).

Dans tous les CCD, le bruit (électrons parasites) augmente très fortement avec la température : il double tous les 6 à 8 °C. C'est pourquoi on doit refroidir les CCD pour l'astrophotographie utilisant de très longs temps de pose. Dans les photoscopes, le temps d'exposition utilisable à température ambiante est de l'ordre de la minute, un photosite se remplissant par le jeu des diverses fuites en v à 10 minutes.

Couleurs [modifier | modifier le code]

Les capteurs CCD sont sensibles à 50'ensemble du spectre de la lumière visible. Grâce à une matrice de filtres colorés, par exemple un filtre de Bayer, constitué de cellules colorées des couleurs primaires, chaque photosite du capteur ne voit qu'une seule couleur : rouge, vert ou bleu. Sur chaque groupe de quatre photosites on trouve un pour le bleu, un pour le rouge et deux cascade le vert ; cette répartition stand for à la sensibilité de notre vision.

Du fait de la précision requise, les pastilles colorées du filtre sont déposées directement sur le capteur avec une technologie proche de la photolithographie des circuits intégrés, de même que le réseau de micro-lentilles.

C'est le logiciel du photoscope qui va recréer les couleurs, en tenant compte des courbes de réponse spectrale pour un résultat terminal en trichromie ; un des problèmes est de limiter le bruit électronique qui se traduit par des effets de moiré sur les zones de faible lumière par de judicieux compromis lors du traitement d'image (interpolation, filtrage : voir l'article Traitement du signal).

Filtres à infrarouges et filtres antialias [modifier | modifier le code]

Tous les capteurs couleur CCD ont en commun d'être munis d'un filtre infrarouge (souvent plaqué directement à leur surface) ; mais ce filtre remplit simultanément plusieurs fonctions :

  • élimination intégrale du rouge profond (longueur d'onde supérieure à 700nm) et de l'infrarouge (d'où son nom ; pratiquement tous les capteurs CCD sont affectés par 50'infrarouge proche),
  • un rendu conforme à la sensibilité spectrale de fifty'œil humain (c'est la raison pour laquelle ces filtres ont une couleur bleue) par absorption croissante dans le domaine du rouge au-delà de 580nm,
  • élimination de la lumière violette et ultraviolette en deçà de 420nm, si tant est que le capteur soit encore réceptif à ces longueurs d'onde.

Sans ce filtre, les taches bleu foncé et rouge foncé seraient trop claires sur le cliche. Les objets chauds (mais non les flammes ou une lampe à souder) seraient eux aussi trop lumineux et présenteraient united nations aspect irréel. Enfin, toutes les surfaces qui réfléchissent ou émettent des infrarouges ou des ultraviolets seraient rendus par des couleurs inattendues.

Avec les matrices Bayer et les autres capteurs à CCD unique, il est nécessaire d'utiliser un filtre anticrénelage, afin de mixer les pixels d'objets voisins, de sensibilité différente aux couleurs. Sans ce filtre, united nations bespeak ou une ligne de couleur claire pourraient n'être représentés que par une seule couleur. Les filtres antialias évitent en outre que des lignes ou arêtes qui feraient un angle très faible avec les rangées de pixel, prennent un attribute en marches d'escalier. Les filtres anti-alias entraînent une réduction minime de la précision de l'epitome.

Filtres antialias et filtres infrarouges sont souvent associés dans les appareils à CCD.

Progrès constants [modifier | modifier le lawmaking]

Amélioration des capteurs CCD

Des améliorations sont régulièrement apportées aux capteurs CCD de façon à en améliorer la sensibilité en augmentant la surface active :

  • Dans les super-CCD HR (Fujifilm), chaque photosite possède une surface octogonale ;
  • Puis (Fujifilm, 2004) les photosites sont dédoublés en un élément de grande taille « Southward » et un élément plus petit « R » qui étend la dynamique vers les hautes lumières (de 2 $.25) en deux générations successives, SR et SR II ;
  • Le super-CCD Hr (Fujifilm, 2005) bénéficie d'électrodes plus fines qui diminuent la profondeur des « puits » des photosites qui reçoivent donc une plus grande proportion de la lumière ;
  • L'utilisation d'électrodes en oxyde d'indium-étain (ITO), plus transparentes dans le bleu, améliore la réponse spectrale des CCD pleine trame (Kodak, 1999) ;
  • Le CCD progressif (Kodak, 2005) dispose de drains d'évacuation de charges (LOD) plus fins, au bénéfice là encore de la surface utile.

Capteur CMOS [modifier | modifier le code]

Un capteur CMOS («complementary metal-oxide-semiconductor ») est composé de photodiodes, à l'instar d'un CCD, où chaque photosite possède son propre convertisseur accuse/tension et amplificateur (dans le cas d'united nations capteur APS).

Leur consommation électrique, beaucoup plus faible que celle des capteurs CCD, leur vitesse de lecture et le plus faible coût de production sont les principales raisons de leur grande utilisation.

De la même façon que beaucoup de CCD, les capteurs CMOS pour image couleur sont associés à un filtre coloré et united nations réseau de lentilles, encore plus nécessaire vu la faible surface relative de la photodiode, seule zone sensible.

Capteur Foveon [modifier | modifier le code]

Le capteur X3 met à profit le fait que les grandes longueurs d'onde de la lumière pénètrent plus profondément dans le silicium.

Ce capteur permet la capture des trois couleurs rouge, vert et bleu par un seul photosite, au moyen de trois couches de silicium recouvertes de photosites et disposées en sandwich et filtrées chacune par un filtre bleu, vert ou rouge ; Chacune des couches de photo-récepteurs est précisément espacée relativement aux longueurs d'onde bleue, verte et rouge de la lumière visible. Pour simplifier, nous pourrons dire qu'en recevant un rayon incident, la couche superficielle du silicium arrête le bleu, que la couche médiane arrête le vert et enfin que le rouge est stoppé par la couche inférieure, comme 50'illustre la effigy ci-contre.

Le capteur X3 a été développé par la société américaine Foveon, rachetée en 2008 par Sigma, qui bénéficie depuis d'un droit d'exploitation exclusif.

Contrairement à un photosite de capteur CCD qui capture seulement une couleur primaire (rouge, vert ou bleu), un photosite de capteur X3 recueille une composante RVB. Ceci nécessite donc beaucoup moins d'électronique de calcul, puisque la couleur est directement obtenue sur le photosite et plus après traitement électronique des couleurs de quatre photosites. C'est un avantage sur le programme du coût de fabrication, mais aussi sur le program de la qualité. En effet, l'absence de calculs et d'interpolations permet d'espérer des images plus « propres », et permettrait aussi un rythme de prises de vues plus rapide en style rafale.

Historique [modifier | modifier le code]

Avant le traitement numérique des photos, la lumière était captée par une pellicule photographique. Sur les appareils numériques, ce motion-picture show a été remplacé par un capteur photographique électronique sensible à la lumière. La qualité d'une photograph ou éventuellement d'une vidéo dépend de plusieurs facteurs importants (quantité et qualité de l'optique pour transmettre la lumière, qualité et quantité de lumière reçue sur la surface du capteur photographique électronique. La surface en millimètres carrés et le nombre de cellules photosensibles (photosite) d'united nations capteur photographique électronique jouent donc un rôle essentiel dans la photographie.

Segmentation du marché en fonction de la surface du capteur [modifier | modifier le code]

Le taille, la définition et les performances des systèmes dépendent des besoins liés à leurs utilisations. Le marché est séparé en différentes catégories : industrie, photographie professionnelle et amateur, audiovisuel, astronomie, surveillance, etc.

Dans le domaine de la photographie argentique, le format « 35 mm » est le plus répandu. Aussi appelé « 24 × 36 » automobile la surface utile est de 24 mm de haut sur 36 mm de large (proportions L/H 3/2) avec une diagonale de 43,27mm. Les appareils photographiques reflex numériques utilisent des capteurs qui reproduisent ces dimensions.

Standards ou normes les plus courants des capteurs [modifier | modifier le code]

Avec les appareils photographiques numériques, on retrouve le standard historique de la photographie argentique et de nouveaux concernant la surface des capteurs photographique électronique :

Dénomination ou norme de l'industrie et dimension du capteur (liste des plus courants)

Nom du capteur Surface Diagonale Proportion H/L Segment Produits
24 × 36 ("35 mm", "plein-format" (Full frame) 24 × 36mm 43,27mm ii/3 Haut de gamme
  • Nikon D3S, D4, D4s, D5, D610, D700, D750, D800, D810
  • Canon EOS 5D III, 6D, 1D 10
  • Sony A7
APS-H (développé par Catechism) 19,1 × 28,sevenmm 34,47 mm 1,996/3 Moyen et début de haut de gamme Canon EOS-1D
APS-C (développé par Nikon) 15,v × 23,6mm
15,eight × 23,viimm
28,23mm
28,48mm
one,97/iii
ii/iii
Moyen et début de haut de gamme
  • Nikon D3300, D5500, D90, D7200, D200, D300, D500
  • Sony A6000, Sony A77
APS-C (développé par Canon) 14,8 × 22,2mm 26,68mm 2/3 Moyen et début de haut de gamme
  • Canon EOS 1200D, 600D, 750D, 7D
4/iii" et µ4/3" (développé par Olympus et Panasonic) 13,2 × 8,eightmm 21,6mm 3/4 Moyen et haut de gamme
  • Olympus four/three E-one, Eastward-30, E-3, E-5, E-400, 420, 510, 520, 620
  • Olympus µ4/three OM-D E-M5, E-M10 et E-M1
  • Panasonic Lumix GH1, GH2, GH3, GH4, GH5, G1, G2, GF1, GF2, etc.
1" 17,eight × 13,fourmm 16mm 2/3 Appareils de gamme moyenne
  • Nikon 1
  • Catechism PowerShot G7 10, G7 Ten Mark Two
  • Sony RX 10, Sony RX 100
ii/3" half dozen,half dozen × 8,8mm 11mm 3/4 Appareils à super zoom ou populaires
ane/8" i,2 × 1,6mm 2mm 3/four Appareils bon marché et bas de gamme

Nombre de cellules photosensibles par millimètre carré [modifier | modifier le code]

Il peut être utile pour 50'utilisateur d'united nations appareil photographique, désirant connaître les possibilités dans des conditions difficiles de lumière (faible intensité), de connaître non seulement la taille de la surface du capteur photographique, mais également le nombre de cellules photosensibles (photosite) ou Méga Pixel sur celle-ci. On peut calculer avec ces deux grandeurs la densité des pixels ou des cellules photosensibles du capteur par millimètre carré.

Exemple de calculs de la densité des pixels du capteur plein format (24 × 36mm)

Pixel par hauteur Pixel par longueur Nombre de pixels sur la surface Surface du capteur [millimètres carrés] Densité des pixels par millimètre carré
3 000 4 000 12 000 000 864 13 889
four 000 5 000 20 000 000 864 23 148
5 000 6 000 30 000 000 864 34 722
vi 000 6 000 36 000 000 864 41 667

Qualité de fifty'epitome en fonction de la surface du capteur [modifier | modifier le code]

Comparaison des surfaces de capteurs.

Plus le nombre de pixels est élevé, plus la définition d'une photo est bonne, ce qui peut être utile lorsque fifty'on agrandit une image. Le nombre de cellules photosensibles par millimètre carré du capteur a cependant aussi une influence sur la qualité des images : il n'y a donc pas de lien exclusif entre nombre de pixels et qualité d'image en sortie, et il est généralement inutile de ne comparer deux capteurs que par leur nombre de pixels : la qualité d'une paradigm dépend également de la qualité et de l'intensité de la lumière que le capteur peut recevoir sur chacune de ses cellules photosensibles.

Un capteur avec une petite surface mais avec une grande densité de pixels par millimètre carré peut être intéressant au niveau de la production de masse et peut faire baisser le prix sans nécessairement diminuer la qualité de la photo. Voir les limitations techniques décrites ci-dessous.


On parle de la sensibilité aux différents rayonnements électromagnétiques et de la plage dynamique du capteur.

Exemple d'united nations capteur 2/3" avec une très bonne densité des pixels par millimètre carré

Pixel par hauteur Pixel par longueur Nombre de pixels sur la surface Surface du capteur (millimètres carrés) Densité des pixel par millimètre carré
2 500 three 500 8 750 000 58.ane 150 602

Avec united nations tel capteur, il est possible de faire de très bonnes photos, cascade autant que la quantité et la qualité de la lumière soit également bonnes. Lorsque l'on agrandit une photo avec cet appareil, pour imprimer un affiche par exemple, il est likely que les détails ne seront pas visible à cause du bruit. Dans des conditions difficiles, par exemple un concert avec un chanteur à 300m, une lumière faible et un objectif avec une altitude focale également faible, la photo du visage du chanteur ne sera pas visible ou très foncée et avec un bruit élevé.

En simplifiant, plus la surface d'un capteur est grande et plus la densité des pixels par millimètre carré est faible, plus il captera les différents rayonnements de la lumière avec précision (augmentation de la plage dynamique ).

De cette manière on peut avec une surface importante du capteur, dans des conditions de lumière difficile, diminuer le bruit et tout de même obtenir une image de bonne qualité.

Performances des capteurs [modifier | modifier le code]

La résolution maximale d'un capteur est fonction du nombre de photosites qui permettra d'obtenir autant de pixels grâce à une interpolation astucieuse.

Selon les performances requises, united nations capteur CMOS peut être supplanté par un CCD ou inversement ; cependant, les appareils photo grand public tendent à remplacer les capteurs CCD par des capteurs CMOS, de qualité comparable aujourd'hui et à des coûts plus faibles. Le CCD reste utilisé dans certaines applications telles que l'imagerie très haute cadence ou à très bas niveau de lumière, motorcar il génère des images moins bruitées que les CMOS.

L'efficacité quantique du capteur est définie par le rapport électrons produits/photons incidents (ce qui est un indicate commun avec le principe de base de la photographie argentique). Elle est surtout fonction de la taille de la partie active de chaque photosite (c'est-à-dire la surface de capture des photons).

La réduction de la surface des photosites influence surtout la dynamique (CCD) et le niveau de bruit (CCD et CMOS) ce qui freine la course aux mégapixels. La dynamique d'un capteur CCD est généralement évaluée par la formule :

D y n a grand i q u eastward = 20 l o g ( V c a p 5 o b southward + Five b r u i t ) {\displaystyle {\rm {Dynamique=xx*log\left({\frac {Vcap}{Vobs+Vbruit}}\correct)}}}

où la dynamique est obtenue en dB (décibels);

Vcap représente la tension maximale open-door par le photosite lorsque sa capacité de stockage est au maximum.

Vobs représente la tension résiduelle en obscurité totale.

Vbruit représente la tension de bruit de lecture.

Afin de comparer la sensibilité des capteurs à la sensibilité nominale des films argentiques, la norme internationale ISO 12 232 définit une sensibilité ISO des systèmes numériques.

Caractéristiques des capteurs cascade photoscope [modifier | modifier le lawmaking]

Le tableau ci-après donne les dimensions courantes des capteurs CCD ou CMOS utilisés en 2006 dans les appareils photo numériques accessibles. D'autres dimensions sont disponibles, en plus petit (utilisés notamment dans les téléphones cellulaires ou les Photographic camera web) ou en plus grand (appareils photo 1000 format).

Mpixels Format Ratio Fifty/H Largeur Hauteur Diagonale Surface Rapport
x 1/2,v" iv:3 5,ane 3,8 6,four 20 6,8x
12 1/1,8" four:3 7,i 5,three 8,nine 39 4,9x
eight 1/ane,7" 4:three 7,six 5,6 9,iv 43 4,6x
viii i/1,6" 4:3 8,0 vi,0 ten,0 49 4,3x
12 2/three" 4:3 8,eight 6,6 eleven,0 59 iii,9x
18 four/3" 4:iii 17,8 13,iv 22,3 243 2x
four,7*3 20,7x13,8 mm 3:2 xx,vii 13,8 24,9 286 1,7x
viii 22x15 mm 3:two 22 15 26,seven 329 ane,6x
12,1 23,6x15,8 mm 3:2 23,6 15,8 28,2 382 1,5x
10 28,77 x 18,7 mm iii:2 28,77 18,seven 34,3 538 1,3x
25 36x24 mm 3:2 36 24 43,3 900 1x

Les dimensions sont en mm, la surface en millimètres carrés. Les mégapixels indiqués sont indicatifs des meilleures définitions disponibles dans chaque dimension à mi-2009. Le « rapport », que l'on nomme également « coefficient de multiplication », est le multiplicateur à appliquer à la longueur focale de l'objectif cascade obtenir la longueur focale correspondant au même angle de cadrage en 24 × 36.

Les capteurs de plus grande définition équipent 50'équivalent des moyens formats (6 ten iv,5 ou 6 x 6) et atteignent 39 mégapixels (capteur 37 x 49 mm).

L'habitude de noter les dimensions en fraction de pouce vient des anciens tubes de prise de vue d'un pouce de diamètre dont la diagonale de la zone sensible était de xvimm. Le format indique donc en réalité une fraction (approximative) de cette diagonale et not pas une fraction de pouce. Ainsi, united nations capteur de 1/1,8'' a en réalité une diagonale d'environ 16/1,8 mm. Un capteur de ane'' aurait selon cette convention une diagonale de seulement 16 mm et not pas 25,4 mm comme on pourrait le croire en effectuant la conversion normale des pouces en mm.

Capteurs utilisés dans les appareils photographiques numériques [modifier | modifier le code]

Hauteur Largeur Format Nombre de pixels Soit en mégapixels Utilisation
100 100 i:ane 10 000 0,01 Steven Sasson Prototype (1975)
570 490 4:3 aspect ratio 279 300 0,27 Sony Mavica (1981)
640 480 4:3 aspect ratio 307 200 0,3 Apple QuickTake 100 (1994)
832 608 4:3 aspect ratio 505 856 0,5 Catechism PowerShot 600 (1996)
ane 024 768 4:3 aspect ratio 786 432 0,8 Olympus D-300L (1996)
1 280 960 4:3 aspect ratio ane 228 800 i,3 Fujifilm DS-300 (1997)
1 280 ane 024 5:4 1 310 720 ane,three Fujifilm MX-700 / Leica Digilux (1998), Fujifilm MX-1700 (1999) / Leica Digilux Zoom (2000)
1 600 i 200 4:3 aspect ratio 1 920 000 two Nikon Coolpix 950, Samsung GT-S3500
2 012 1 324 3:2 aspect ratio 2 663 888 2,74 Nikon D1
2 048 one 536 4:3 aspect ratio iii 145 728 3 Catechism PowerShot A75, Nikon Coolpix 995
ii 272 1 704 4:3 aspect ratio iii 871 488 four Olympus Stylus 410, Contax i4R (although CCD is really foursquare 2272x2272)
ii 464 one 648 3:2 aspect ratio four 060 672 iv,1 Canon 1D
ii 560 1 920 4:3 aspect ratio four 915 200 five Olympus Eastward-1, Sony Cyber-shot DSC-F707, Sony Cyber-shot DSC-F717
2 816 2 112 4:3 aspect ratio 5 947 392 6 Olympus Stylus 600 Digital
3 008 1 960 3:2 aspect ratio 5 895 680 half dozen Nikon D1X
3 008 ii 000 3:2 aspect ratio 6 016 000 6 Nikon D40, D50, D70, D70s, Pentax K100D
3 072 2 048 3:2 aspect ratio 6 291 456 6,3 Catechism 300D, Canon 10D
iii 072 2 304 4:3 aspect ratio 7 077 888 7 Olympus Fe-210, Canon PowerShot A620
three 456 2 304 3:2 aspect ratio seven 962 624 8 Catechism 350D
three 264 2 448 4:3 aspect ratio 7 990 272 8 Olympus East-500, Olympus SP-350, Canon PowerShot A720 IS
iii 504 two 336 3:2 aspect ratio 8 185 344 eight,2 Canon 30D, Canon 1D Two, Canon 1D II N
3 520 2 344 3:2 aspect ratio 8 250 880 viii,25 Canon 20D
3 648 2 736 4:3 aspect ratio ix 980 928 10 Olympus Eastward-410, Olympus E-510, Panasonic FZ50, Fujifilm FinePix HS10
3 872 2 592 3:2 aspect ratio ten 036 224 x Nikon D40x, Nikon D60, Nikon D3000, Nikon D200, Nikon D80, Pentax K10D, Sony Alpha A100
three 888 2 592 3:2 aspect ratio 10 077 696 ten,one Canon 400D, Canon 40D
iv 064 2 704 3:2 aspect ratio ten 989 056 xi Canon 1Ds
four 000 3 000 4:3 aspect ratio 12 000 000 12 Canon PowerShot G9, Fujifilm FinePix S200EXR
iv 256 2 832 3:2 aspect ratio 12 052 992 12,1 Nikon D3, Nikon D3s, Nikon D700, Fujifilm FinePix S5 Pro
four 272 2 848 3:2 aspect ratio 12 166 656 12,two Catechism 450D
4 032 iii 024 4:3 aspect ratio 12 192 768 12,2 Olympus PEN Eastward-P1
iv 288 2 848 3:2 aspect ratio 12 212 224 12,2 Nikon D2Xs/D2X, Nikon D300, Nikon D90, Nikon D5000, Pentax Yard-10
4 900 2 580 3:2 aspect ratio 12 642 000 12,6 RED ONE Mysterium
four 368 2 912 3:2 aspect ratio 12 719 616 12,7 Canon 5D
vii 920 (ii 640 × iii) 1 760 3:2 aspect ratio thirteen 939 200 xiii,9 Sigma SD14, Sigma DP1 (3 couches de pixels, 4.7 MP par couche, Foveon X3 sensor)
four 672 3 104 3:2 aspect ratio 14 501 888 14,five Pentax K20D
iv 752 iii 168 3:2 aspect ratio xv 054 336 fifteen,i Canon EOS 500D, Canon EOS 50D
4 928 3 262 3:2 aspect ratio 16 075 136 sixteen,1 Nikon D7000, Nikon D5100, Pentax K-5, Pentax One thousand-5II, Pentax K-5IIs, Nikon Df
4 992 iii 328 3:2 aspect ratio 16 613 376 xvi,six Canon 1Ds Two, Canon 1D Marker IV
5 184 three 456 3:2 aspect ratio 17 915 904 17,nine Canon EOS 550D, Catechism EOS 600D, Catechism EOS 60D, Canon EOS 7D
5 270 three 516 3:2 aspect ratio 18 529 320 18,5 Leica M9
5472 3648 3:2 aspect ratio xix 961 356 20.2 Canon EOS 7D Mark Two
5 616 three 744 3:2 aspect ratio 21 026 304 21,0 Canon 1Ds III, Catechism 5D Mark Ii
six 048 four 032 3:2 aspect ratio 24 385 536 24,four Sony α 850, Sony α 900, Nikon D3X
vii 500 5 000 3:2 aspect ratio 37 500 000 37,five Leica S2
7 212 5 142 4:3 aspect ratio 39 031 344 39,0 Hasselblad H3DII-39
seven 216 5 412 4:3 aspect ratio 39 052 992 39,1 Leica RCD100
viii 176 6 132 4:3 aspect ratio fifty 135 232 50,ane Hasselblad H3DII-50
11 250 5 000 9:4 56 250 000 56,iii Better Lite 4000E-HS
viii 956 6 708 4:3 aspect ratio 60 076 848 threescore,1 Hasselblad H4D-sixty
8 984 six 732 4:3 aspect ratio 60 480 288 sixty,5 Phase One P65+
10 320 7 752 4:3 aspect ratio eighty 000 640 lxxx Leaf Aptus-2 12
9 372 9 372 1:ane 87 834 384 87,8 Leica RC30
12 600 10 500 6:five 132 300 000 132,three Phase I PowerPhase FX/FX+
18 000 eight 000 9:4 144 000 000 144 Meliorate Light 6000-HS/6000E-HS
21 250 7 500 17:vi 159 375 000 159,4 Seitz 6x17 Digital
xviii 000 12 000 3:2 aspect ratio 216 000 000 216 Better Light Super 6K-HS
24 000 15 990 2400:1599 383 760 000 383,eight Meliorate Light Super 8K-HS
30 600 13 600 9:iv 416 160 000 416,2 Better Low-cal Super 10K-HS
62 830 7 500 6283:750 471 225 000 471,2 Seitz Roundshot D3 (80 mm lens)
62 830 thirteen 500 6283:1350 848 205 000 848,2 Seitz Roundshot D3 (110 mm lens)
157 000 18 000 157:18 2 826 000 000 2 826 Better Lite 300 mm lens Digital

Production et marché [modifier | modifier le code]

Sony est le deuxième fabricant mondial de capteurs photo derrière Canon [3] .

Prospective [modifier | modifier le lawmaking]

Une piste explorée par plusieurs entreprises ou unités de recherche, dont la spin-off Chronocam, est de créer une rétine artificielle biomimétique fondée sur une seconde génération de capteurs CMOS (complementary metal oxide semi-conductor) cascade produire une vision artificielle et mieux extraire de l'information à partir des images [iv] . Cette rétine synthétique ne capturerait que les informations changeantes qu'elle mettrait à jour en continu tout en consommant moins d'énergie qu'une caméra classique [4] . Selon Chronocam, la vision serait alors environ 30 fois plus rapide qu'avec les capteurs actuels. En 2017, des applications militaires semblent envisagées dans le domaine de la surveillance et du renseignement [4] .

Voir aussi [modifier | modifier le code]

Articles connexes [modifier | modifier le code]

  • Caméra sans fil
  • Format Nikon DX
  • Format Nikon FX
  • Vision industrielle
  • Binning

Liens externes [modifier | modifier le code]

  • Le capteur photosensible des appareils photo numériques Sur le site astrosurf.com
  • Le ingather cistron expliqué : FF contre APS Sur le site nicolasgenette.com
  • (en) Kodak Image Sensor Solutions Sur le site kodak.com

Notes et références [modifier | modifier le code]

  1. [PDF] (en) Robert B. Friedman et Rick Kessler, «The Photoelectric Outcome & Its Applications » [annal du ] , Yerkes Summertime Plant de l'université de Chicago, (consulté le )
  2. (en) Charlie Sorrel, «Inside the Nobel Prize: How a CCD Works », Wired ,‎ (lire en ligne, consulté le )
  3. Christian D, «Sony : 1,2 milliard de dollars pour les capteurs photo », sur www.generation-nt.com, (consulté le )
  4. a b et c Bergounhoux Julien (2017) Intelligence artificielle, réalité virtuelle... Annotate la pépite française Chronocam pourrait tout changer , article paru dans L'usine digitale ; 30 mai

Comment Calculer Le Nombre D Électrons,

Source: https://fr.wikipedia.org/wiki/Capteur_photographique

Posted by: wardposs1950.blogspot.com

0 Response to "Comment Calculer Le Nombre D Électrons"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel